Equidistribution of the Fekete Points on the Sphere

نویسندگان

  • JORDI MARZO
  • JOAQUIM ORTEGA-CERDÀ
چکیده

The Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of the Fekete points in the sphere. The way we proceed is by showing their connection with other array of points, the Marcinkiewicz-Zygmund arrays and the interpolating arrays, that have been studied recently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution of Fekete Points on the Sphere

Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-...

متن کامل

Equidistribution of Points via Energy

We study the asymptotic equidistribution of points with discrete energy close to Robin’s constant of a compact set in the plane. Our main tools are the energy estimates from potential theory. We also consider the quantitative aspects of this equidistribution. Applications include estimates of growth for the Fekete and Leja polynomials associated with large classes of compact sets, convergence r...

متن کامل

Fekete Points and Convergence towards Equilibrium Measures on Complex Manifolds

Building on [BB08a], we prove a general criterion for convergence of (possibly singular) Bergman measures towards equilibrium measures on complex manifolds. The criterion may be formulated in terms of growth properties of balls of holomorphic sections, or equivalently as an asymptotic minimization of generalized Donaldson L-functionals. Our result yields in particular the proof of a well-known ...

متن کامل

On the Spacing of Fekete Points for a Sphere, Ball or Simplex

Suppose that K ⊂ IR is either the unit ball, the unit sphere or the standard simplex. We show that there are constants c1, c2 > 0 such that for a set of Fekete points (maximizing the Vandermonde determinant) of degree n, Fn ⊂ K, c1 n ≤ min b∈Fn b 6=a dist(a, b) ≤ c2 n , ∀a ∈ Fn where dist(a, b) is a natural distance on K that will be described in the text. §

متن کامل

Spatial statistics for lattice points on the sphere I‎: ‎Individual results

‎We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares‎. ‎We examine several statistics of these point sets‎, ‎such as the electrostatic potential‎, ‎Ripley's function‎, ‎the variance of the number of points in random spherical caps‎, ‎and the covering radius‎. ‎Some of the results are conditional on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008